
JanusW
Version 1.30
Date: 03/04/94

© 1994 Peter Sawatzki
Buchenhof 3, D 58091 Hagen, Germany
CompuServe: 100031,3002

The JanusW.Zip is a collection of units for Borland Pascal for Windows. The zip file is called JanusW(n) 
because of a feature in the object tDialogWindow from the unit DialogWn: it let's you decide at runtime 
whether or not to display the dialog as a BorDlg or as a standard dialog; 'Janus' because of the roman 
God Janus with two faces.

JanusW contains these units:

DialogWn the main unit: contains object tDialogWindow that enables the use of dialogs as MDI 
child windows

DynLink contains object tDll to dynamically load and unload DLLs. Two instances of tDll 
dBWCC and dCtl3d contain definitions for Borland and Microsoft custom controls.

VBX this unit enables support for VBX controls
Debug useful functions for debugging output

Included are the following sample programs:

DlgTest full featured test program to test tDialogWindows as MDI childs. This application may 
be used as a non-MDI application as well.

MinMdi this is a minimal 10 line demo program to demonstrate the use of dialogs as MDI 
childs

See also:

Tips tips for the usage of tDialogWindow
New whats new in this JanusW release
DEW how to modify tEntryScreen object from TurboPowers Data Entry Workshop to coexist

with tDialogWindow

Contributing:

People these people contributed to the development of JanusW



the following people contributed to the development of JanusW:
Dan O. Butler (dob) [72134,633]
Andy Cook [71331,501]
Ron Loewy (rl) [100274,162]
Jeroen W. Pluimers (jwp)
Max Stempfhuber (ms) [100140,2034]
Dean Wyant [75110,3253]



DialogWn
The unit DialogWn consists of three related objects: tDialogWindow, tAdvMdiWindow and 
tAdvApplication. While only tDialogWindow is necessary to make non-MDI dialogs, for MDI applications 
the use of tAdvMdiWindow and tAdvApplication is absolutely necessary to keep track of the dialog focus.

tDialogWindow
tDialogWindow is a descendant of tWindow that behaves like a modeless or (system-) modal    dialog. It 
may be used as a replacement for Borlands tDialog and tDlgWindow. Unlike the tDialog descendant 
tDlgWindow it inherits all features from tWindow making it easy to use tDialogWindow as a MDI child. 
Futhermore, tDialogWindow uses DnyLink to dynamically link to BWCC and Ctl3D. Any tDialogWindow 
instance can be forced to display itself as a normal, BWCC, or Ctl3D dialog (of course, the appropriate 
DLL must be available). For information about the usage of tDialogWindow see how to use 
tDialogWindow. See also: details of the tDialogWindow implementation

tAdvMdiWindow
This is a descendant of tMdiWindow that must be used to properly restore the focus of the MDI childs 
and to enable the KBHandlerWnd.

tAdvApplication
This is a descendant of tApplication that changes the application message loop for MDI dialog childreen 
to enable keyboard accelerators. Furthermore, it helps keep track of the dialog focus.
For an example of a minimal program that implements dialogs as MDI childs see the demo program 
MinMdi



DynLink
DynLink is a unit that takes care of dynamically linking Windows DLLs. It is used by DialogWn to load the 
Borland Custom Control library BWCC or the Microsoft CTL3D library.



Debug
A unit to route WriteLn()s to the debugging terminal or the DbWin window



BWCC
BWCC is Borlands Custom Control library to give your dialogs the Borland chiseled steel look



Ctl3D
Ctl3D is a Custom Control Library by Microsoft to give your dialogs a cool 3D look



BIVBX10
BIVBX10 is a .DLL file from the Borland C++ 4.0 compiler package. In JanusW it is used to provide 
access to Visual Basic Custom Controls (VBX)



DlgTest
DlgTest demonstrates the use of tDialogWindows as modeless and modal dialog windows and MDI child 
windows. It also demonstrates the effects of forcing dialogs to normal, BWCC or Ctl3D appearance. 
creates a user customizable combination of a StdDlg, BorDlg and/or MS Ctl3D dialog

- demonstrates the use of "non-standard" MDI child styles
- enables Microsoft Ctl3D look for all type of dialogs

uses BWCC.DLL and Ctl3D if present.



MinMdi
MinMdi is a very simple program that shows how easy it is to use dialogs as MDI child windows with 
JanusW. For an enhanced example see DlgTest.Pas



How to use tDialogWindow
[to be written]



Details of the tDialogWindow implementation
[to be written]



Tips on using JanusW
Classnames
tDialogWindow receives information about its class directly from the resource: unlike Borlands 
tDlgWindow that must additionally get the classname from the OWL GetClassName method, the 
tDialogWindow object is smart enaugh to read the classname from the dialog resource and return it as a 
result of a GetClassName call. So you should never override GetClassName for tDialogWindow 
descendants: instead specify a unique classname in the properties dialog box of Resource Workshop 
only. Notice: using a non-unique classname leads to MDI child windows with inactive colors and other 
nice effects!

Making a modeless dialog or an MDI child dialog window
to make a modeless dialog window or to insert a dialog as an MDI child window you use 
Application^.MakeWindow:

Application^.MakeWindow(New(pDialogWindow,Init(@Self, 'MyDialog')));

Making a modal dialog
To make a modal dialog with tDialogWindow, use ExecDialogWindow as you would use ExecDialog with 
the standard OWL tDialog object:

aDialog:= New(pDialogWindow, Init(@Self, 'MyDialog'));
If ExecDialogWindow(aDialog)=Id_Ok Then ....

Do not dispose the dialog after the ExecDialogWindow call, ExecDialogWindow does this for you as 
ExecDialog does it for tDialog objects!

Dialog styles
Specify style WS_POPUP for your dialogs. Although this style is not allowed for MDI child windows, 
tDialogWindow converts this window style to WS_CHILD if used under MDI. This makes it easy to use 
your dialogs as MDI childs and as popup dialogs if needed

MDI child windows with non-standard style
If you want to create non-standard MDI child windows e.g. child windows with non-sizeable frames, 
windows with no system menu etc., you must do the following (see DlgTest.Pas for an example):
1. override the InitClient method like this:

Procedure aMDIWindow.InitClientWindow;
Begin
ClientWnd:= New(pMdiClient, Init(@Self));
With ClientWnd^.Attr do

Style:= Style Or MdiS_AllChildStyles
End;

2. specify all attributes for your child windows in Resource Workshop! MDI now uses no default 
style. This applies especially to the style WS_VISIBLE! If you do not specify this style your MDI child 
windows are created invisible and you have to use ShowWindow() to make 'em visible.

Scrollbars for the MDI Client window
If you like to have scrollbars for your MDI client window, modify InitClientWindow like this:

Procedure aMDIWindow.InitClientWindow;
Begin

ClientWnd:= New(pMdiClient, Init(@Self));
With ClientWnd^.Attr do
Style:= StyleOr ws_VScroll Or ws_HScroll {Or MdiS_AllChildStyles}

End;

Dynamic custom control support
tDialogWindow automatically and dynamically loads the following custom control libraries on demand:
1. BWCCbwcc.DLL, if class 'BorDlgxxxx' is specified as the dialog class or DlgStyle is set to 

ForceBor
2. Ctl3D.DLLctl3d, if the bit 'EnableCtl3D' is set in the DlgStyle



3. BIVBX10.DLLbivbx10 is loaded if the dialog resource contains a control of the VBcontrol class
Notice that none of the above libraries are loaded for dialogs that do not use one of the custom control.

Data Entry Workshop
it is possible to use the DialogWn unit together with TurboPowers Data Entry Workshop. For a 
demonstration of tDialogWindows as ancestors of their tEntryScreen, $define "DEW" and recompile the 
DlgTest program.

Versions used/supported by JanusW
1. the DialogWn unit is written for Borland Pascal 7.0x and does not work without modifications 

together with TPW 1.5.
2. the DialogWn unit is and will not be tested with Windows 3.0
3. the DialogWn unit is tested with Ctl3D version > 2.01.



Whats new in this JanusW release
Versions of JanusW prior to 1.25 called the standard Windows DefDlgProc() function to support subtile 
Windows quirks like closing an opened ComboListBox when the user starts to drag a dialog. Beginning 
with version 1.26 tDialogWindow does all this by itself. This means, it does not register the DlgExtra class
bytes necessary to be DefDlgProc() compatible. Tip: Do not call DefDlgProc() in tDialogWindow 
descendants!

Version 1.27 adds support for VBX controls via Borlands BIVBX10.DLL



tDialogWindow and TurboPowers Data Entry 
Workshop
The tEntryScreen object from TurboPowers DEW (Data Entry Workshop) descends from the standard 
OWL object tDlgWindow. This topic explains how to change the source of DEW to make tEntryScreen 
descend from tDialogWindow. After applying the changes, the tEntryScreen object may be used as a MDI
child window like any other tDialogWindow descendant.
The following three changes are necessary to OODEWCC.PAS:
1. add a 'Uses DialogWn'
2. make tEntryScreen descend from tDialogWindow instead of tDlgWindow (of course <g>)
3. disable the GetWindowClass and GetClassName methods: tDialogWindow retrieves the dialog 
class name directly from the resource and does it's own BorDlg/non-BorDlg/Ctl3D modifications ('Janus' 
property)
Here are the changes to the source of OODEWCC.PAS:
Uses

...
{$IfDef Janus}

DialogWn,
{$EndIf}
{$IfDef Janus}

tEntryScreenParent = tDialogWindow;
{$Else}

tEntryScreenParent = tDlgWindow;
{$EndIf}

PEntryScreen = ^TEntryScreen;
TEntryScreen = object(tEntryScreenParent) {Object corresponding to an entry screen}
...
{$IfNDef Janus}

procedure GetWindowClass(var AWndClass : TWndClass); virtual;
function  GetClassName : PChar; virtual;

{$EndIf}
...
end;
constructor TEntryScreen.Init(AParent : PWindowsObject; ATitle : PChar; var Buffer);
{-Initialize a TEntryScreen object}
begin

tEntryScreenParent.Init(AParent, ATitle);
...

end;
{$IfNDef Janus}
... code for GetWindowClass and GetClassName
{$EndIf}



The unit VBX
VBX is a unit that takes care of dynamically linking to Borlands BIVBX10.DLL. It is used by DialogWn to 
support use of VBX controls in tDialogWindow.

The VBX unit contains several objects to implement the access to VBX controls:

dVbx the dVbx variable is an instance of tVbx. It is used to link to BIVBX10.DLL and provide
basic access to Vbx controls.

tVbxControl defines an OWL wrapper object for a VBX control.

For users who dont want to use the famous tDialogWindow object for their dialogs:

tVbxDialog a tDialog descendant that may contain VBX controls
tVbxDlgWindow a tDldWindow descendant that may contain VBX controls

See also:

VbxInfo a program to generate Pascal units from VBX files
VbxDemo a demo program that uses VBX controls
DlgTest another demo of Vbx controls and the usage of Vbx controls in MDI child windows

Important:

Important this is necessary to use VBX controls in your programs



dVbx object
The dVbx variable is an instance of object tVbx and provides access to all documented functions exported
by BIVBX10.DLL. tVbx is a descendant of tDll, an object for dynamic link library support. As with all tDll 
descendants you may call dVbxs methods without any pre-initialization. For example to create a instance 
of a certain Vbx control - say BIGAUGE - on the fly, all you have to do is the following:

Ctl:= dVbx.VBXCreate(hWindow, 100, gauge.vbx, bigauge, test, 0, 1, 1, 100, 100, 0);

Because dVbx has not loaded BIVBX10.DLL before, it first loads BIVBX10.DLL, calls dVbx.VbxInit, then 
loads gauge.vbx and finally creates the bigauge control.

Most of the time one will be using the methods from an instance of tVbxControl object. Consequently here
is only a documentation of some of the functions exported from tVbx:

VBXGetHctl: Function (window: hWnd): hCtl;
This function returns the VBX control handle associated with the window window or Nil if window is 
not a valid VBX control

VBXGetHwnd: Function (control: hCtl): hWnd;
This function returns the window handle associated with the VBX control control or 0 if control is not 
a valid VBX control. 

VBXCreate: Function (windowParent: hWnd; id: Integer;
lib, cls, title: pChar; style: LongInt;
x, y, w, h: Integer; aFile: hFormFile): hCtl;

This function creates a new instance of the control cls located in the VBX library lib.
The style argument specifies the control window style and can be set to 0 to use the default style.
The file argument specifies a form file and should be set to 0 for dynamically created controls. This 
function returns Nil if it is unable to load the VBX library and create the control.
x, y, w, and h are related system coordinates. 

VBXInitDialog: Function (window: hWnd; instance: tHandle; id: pChar): Bool;
This function is used to initialize a dialog window window loaded from a resource id (located in 
instance) by creating VBX controls for each child window of class VBControl located in the dialog 
template. It should be called by the tWindow/tDialog/tDialogWindow/tDlgWindow object in the 
SetupWindow method. It returns TRUE if successful, or FALSE if an error occurs. Resource id must 
be of rt_DlgInit type. 



tVbxControl object
Fields
Ctl (hCtl)

a 32 bit handle associated with every Visual Basic Custom Control

VbxName (pChar)
Name of the VBX library passed from an Init Constructor

VbxClass (pChar)
Class of VBX control passed from an Init Constructor

InitData (tHandle)
handle to default property data eventually passed from an Init Constructor

Class Methods
Constructor Init (aParent: pWindowsObject; anId: Integer;

aVbxName, aVbxClass, aTitle: pChar;
x, y, w, h: Integer;
Len: LongInt; Data: Pointer);

Constructs a VBX control of class aVbxClass located in VBX library aVbxName with title aTitle. 

Constructor InitResource(aParent: pWindowsObject; anId: Integer); 
Associates already created VBX control anId with an object instance of tVbxControl. 

Destructor Done; Virtual; 

Object Methods
Function Create: Boolean; Virtual;

Procedure wmVbxFireEvent (Var Msg: tMessage); Virtual wm_First+wm_VbxFireEvent;
Msg.lParam is a pointer to a record of type tVbxEvent. This record contains the field EventIndex and 
determines what kind of event is fired from a VBX control. The wmVbxFireEvent method tries to find 
if a method exists in the VMT table for this event and routes the event to the appropriate method. If 
no method for the event exists, the event is routed to the DefaultEventProc.

Procedure DefaultEventProc (Var Event: tVbxEvent); Virtual;
This procedure is called if no special event handler exists for a certain event.

Function GetHCtl: hCtl;
return the VBX control handle associated with the tVbxControl instance.

Object Methods for Properties
Function GetNumProps: Integer;

Function GetPropIndex (Name: pChar): Integer;

Function GetPropName (Index: Integer): pChar;

Function GetPropType (Index: Integer): Integer;

Function IsArrayProp (Index: Integer): Bool;



Function GetProp (Index: Integer; Var Value): Bool;

Function GetPropByName (Name: pChar; Var Value): Bool;

Function GetStrProp (Index: Integer; Dst: pChar): Bool;

Function SetProp (Index: Integer; Value: LongInt): Bool;

Function SetPropByName (Name: pChar; Value: LongInt): Bool;

Object Methods for Events
Function GetNumEvents: Integer;

Function GetEventIndex (Name: pChar): Integer;

Function GetEventName (Index: Integer): pChar;

Object Methods for Vbx Methods
Function Method (aMethod: Integer; Var Args): Bool;

Function AddItem (Index: Integer; Const Item: pChar): Bool;

Function Drag (Action: Integer): Bool;

Function Move (x, y, w, h: LongInt): Bool;

Function Refresh: Bool;

Function RemoveItem (Index: Integer): Bool;



VbxInfo program
The VbxInfo program creates a wrapper unit from a VBX library.



The VbxDemo program
VbxDemo is a simple demo that shows how to use Vbx controls in tDialogWindow descendants. It 
subclasses a Vbx control via InitResource.



tVbxDialog and tVbxDlgWindow objects
tVbxDialog and tVbxDlgWindow are tDialog and tDlgWindow descendants that enable the usage of Vbx 
controls for standard OWL dialogs. This is done by linking to dVbx object before the dialog is created and 
by calling dVbx.VbxInitDialog in SetupWindow. Controls of the class VbControl are now converted to 
corresponding Vbx controls by VbxInitDialog.

Furthermore both objects reroute the wm_VbxFireEvent message to object instances of tVbxControl if the
controls are initialized via tVbxControltVbxCtl.InitResource



VBX control jump vector
Every program that uses VBX controls must have a jump vector at address SS:20h installed: it is 
absolutely neccessary to add the following definition as the first typed constant statement to your main 
program to safely use VBX controls:
Const

VbxValidation: tVbxValidation = cVbxValidation;

And to ensure that BP7's smartlinker does not remove this info, one must 'use' the ValidationInfo at least 
once via a RegisterVBX(VbxValidation) call.
The above makes sure that BIVBX10.DLL does not overwrite data at DS:20h when the VBX jump vector 
gets installed. Consequently the dVBX object refuses to link to BIVBX10 if the above conditions are not 
met!




